ALGORITHMIQUE ET PYTHON FICHE 1: VARIABLES. AFFECTATION. ECRITURE

1°) Variables

UNE VARIABLE est considérée comme une boîte. Elle correspond à une place dans la mémoire de la calculatrice ou de l'ordinateur.

Elle est désignée par un nom (que le créateur de l'algorithme choisit), c'est-à-dire l'étiquette de la boîte.

Par exemple: $X \text{ ou } N \text{ ou } x \text{ ou } y \dots$

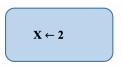
On peut la schématiser ainsi par l'étiquette d'une boîte:

A l'intérieur de cette boîte sera stocké un contenu qui est la valeur de cette variable.

On distingue trois types de valeurs :

- **→** Entier (nombre entier relatif);
- → Flottant (nombre à virgule appelé flottant en informatique);
- → Chaîne de caractères (suite ordonnées de caractères).

2°) Affectation


AFFECTER une valeur à une variable consiste à « ranger » cette valeur dans la variable considérée. On attribue ainsi dans le programme une valeur à la variable .

Ici la valeur de X est 2

Et dans l'algorithme on écrira :

On peut donc la schématiser ainsi :

Attention, toute nouvelle affectation remplace et détruit la précédente. Le contenu précédent de la boîte est écrasé.

Car si ensuite on écrit : $X \leftarrow 5$.

Alors désormais X vaut 5.

3°) Les instructions d'entrée-sortie

• <u>L'entrée</u>

Pour faire fonctionner un algorithme les variables doivent prendre des valeurs au début <u>pour pouvoir démarrer</u>, alors on a 2 cas possibles :

Soit on demande à l'utilisateur d'entrer la valeur de la variable X

Soit le créateur de l'algorithme donne une valeur à la variable X

Et on écrit dans l'algorithme si par exemple X est une variable qui doit valoir 100...

X←100

- → <u>ASTUCE</u>: quand on veut garder la première valeur de *x* parce qu'on en a besoin dans la suite du programme on utilise une **variable auxiliaire de stockage.**
- La sortie : Pour conclure l'algorithme on donne le résultat obtenu .

On écrit dans l'algorithme

Afficher X

4°) IMPORTANT: Programmation

Pour séparer deux instructions successives d'un programme on peut soit aller à la ligne, soit à l'aide d'un ; en python. Pour écrire un programme en Python sur casio on peut le faire lettre à lettre ou les chercher dans le catalogue (shift 4)

	Algorithme	Python
Saisir	Saisir X entier	X= int(input ("X="))
	Ou	
	Saisir X flottant	X = float(input ("X=''))
	Ou X fraction ou racine carrée	X= eval(input ("X="))
	Ou saisir une chaîne de caractères	X= input ("X=")
Affectation	X← 2	X=2
Affichage	Afficher X	Print(X)
Test	A est-il égal à B	A==B
	A différent de B	A !=B
	A≤B / A≥ B	$A \le B/A \ge B$

Pour in	io ave	c le	langage de		
la calculatrice					

	Casio	TI
Saisir	? →X	Prompt X
Affectation	2→X	2→X
Affichage	X 🔼	Disp X
Test	A=B	A=B
	$A \neq B$	A≠B
	A≤B / A≥ B	A≤B / A≥ B