CONTROLE DE 30 MN 23/11/23 SB CORRIGE

Exercice 1

On considère la fonction f définie, continue et dérivable sur R\ {4}

$f(x) \qquad \begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & $	· -3

1°)a) f(
$$]-\infty; -1]$$
) = [3; 6]

b) f(
$$[-3; 4[)=]-\infty; 6]$$

c) f(] 4;
$$+\infty$$
[)=] -3; $+\infty$ [

2°) Donner le nombre de solutions des équations suivantes :

a)
$$f(x) = -5:1$$

b)
$$f(x) = 4:2$$

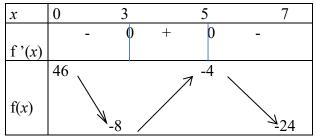
c)
$$f(x) = 0:2$$

Exercice 2

1°) f étant une fonction polynôme elle est dérivable sur I.

$$f'(x) = -3x^2 + 24x - 45$$

 $\Delta = 576 - 4 \times 3 \times 45 = 36$ $\Delta > 0$ donc on a deux racines réelles distinctes $X_1 = 3$ $X_2 = 5$ D'après la règle sur le signe du trinôme et comme a=-3 càd a<0 on a donc le tableau de variations suivant :



2°) A l'aide du tableau de variation <u>démontrer</u> que l'équation f(x) = 0 admet une unique solution x_0 sur I. **f étant dérivable**, elle est continue sur I.

-Sur [0;3]:

f est donc continue et strictement décroissante sur l'intervalle [-2;1] à valeurs dans l'intervalle [-14;40] qui contient 0 alors l'équation f(x)=0 admet une unique solution x_0 sur [0;3] d'après le corollaire du théorème des valeurs intermédiaires relatif aux fonctions strictement monotones.

-Sur [3; 7]:

le maximum de f atteint en 5, vaut -4, donc f < -4 sur [3; 7] et l'équation f(x) = 0 n'admet pas de solution sur [3; 7].

Conclusion:

On en déduit finalement que l'équation f(x) = 0 admet une unique solution xo sur I.

3°) Donner une valeur approchée par défaut à 10^{-2} près de x_0 .

A l'aide de la calculatrice, comme on obtient f $(1.65) \approx -0.072$ et f $(1.64) \approx 0.064$ càd f $(1.64) \times f(1.65) < 0$ alors $1.64 < x_0 < 1.65$

xercice 3 : Calculer la dérivée de f

Df= [1;18] $f(x) = 4x^6 + \frac{2}{x} - \frac{1}{x^2}$	$f'(x) = 24 x^5 - \frac{2}{x^2} + \frac{2}{x^3}$
$f(x) = (x^2 - 1)(x^5 + x)$	$f'(x) = 7x^6 - 5x^4 + 3x^2 - 1$
$f(x) = (5x^3 + x^2 - 6x)^3$	$f'(x) = 3(15x^2 + 2x - 6)(5x^3 + x^2 - 6x)^2$
$f(x) = f(x) = e^{7x^3-6}$	$f'(x) = 21x^2 e^{7x^3 - 6}$
$f(x) = \frac{1}{(x^4 + x^2 + 2)^4}$	$f'(x) = -\frac{4(4x^3 + 2x)}{(x^4 + x^2 + 2)^4}$
$f(x) = \frac{3x+7}{x^2+1}$	$f'(x) = \frac{-3x^2 - 14x + 3}{(x^2 + 1)^2}$
$Df = R$ $f(x) = \sqrt{3x^2 + 5}$	$f'(x) = \frac{3x}{\sqrt{3x^2 + 5}}$