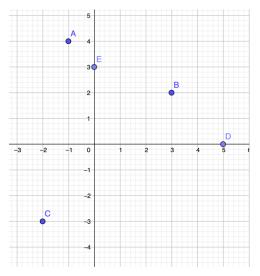
CORRECTION DETAILLEE DU CONTROLE N°2 T1 SECONDE DU 07/11/22 SB

EXERCICE 1

1) A(-2;1) F(5;-1) C(2;0) D(0;-1) 2) $A(\frac{3}{4};0)$ $B(0;\frac{1}{2})$ $C(\frac{1}{4};\frac{1}{2})$ $F(1,5;-\frac{1}{2})$

EXERCICE 2

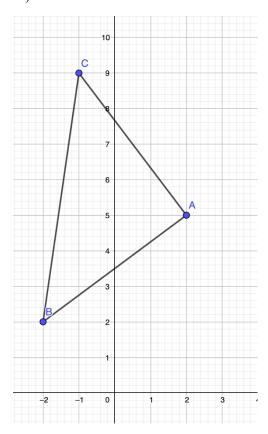
1°)



2°) F
$$(\frac{x_{A+x_{B}}}{2}; \frac{y_{A+y_{B}}}{2})$$
 soit F $(\frac{-1+3}{2}; \frac{4+2}{2})$ soit F $(1;3)$

EXERCICE 3

1°)



AB =
$$\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(-2 - 2)^2 + (2 - 5)^2} = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

AC = $\sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(-1 - 2)^2 + (9 - 5)^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$
BC = $\sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(-1 + 2)^2 + (9 - 2)^2} = \sqrt{1^2 + 7^2} = \sqrt{50}$

Comme AB = AC le triangle est isocèle en A.

De plus

 $AB^2 + AC^2 = BC^2$ donc d'après la réciproque du théorème de Pythagore le triangle ABC est rectangle en A.

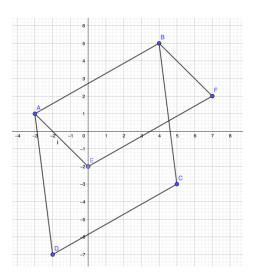
Ainsi on en déduit finalement que le triangle ABC est rectangle isocèle en A.

EXERCICE 4

1. c) 2. b 3. c)

EXERCICE 5

1°)



G (
$$\frac{x_B + x_E}{2}; \frac{y_B + y_E}{2}$$
) soit G ($\frac{4+0}{2}; \frac{5-2}{2}$) soit G(2; $\frac{3}{2}$)

2°) Si ABFE est un parallélogramme alors ses diagonales se coupent en leur milieu c'est-à-dire que G est aussi le milieu du segment [AF] avec F de coordonnées $(x_F; y_F)$. Ce qui donne :

$$2 = \frac{-3 + x_F}{2} \qquad \text{et} \quad \frac{3}{2} = \frac{1 + y_F}{2}$$

Soit $4 = -3 + x_F \qquad \text{et} \quad 3 = 1 + y_F$

Soit encore $x_F = 7$ et $y_F = 2$; On a donc F(7; 2)

3°) Le milieu de la diagonale [BD] a pour coordonnées $(\frac{4-2}{2};\frac{5-7}{2})$ soit (1;-1)

Le milieu de la diagonale [AC] a pour coordonnées ($\frac{-3+5}{2};\frac{1-3}{2}$) soit (1;-1) Les deux diagonales du quadrilatère ABCD ont le même milieu, le quadrilatère ABCD est donc un parallélogramme.

Puis on démontre que ABCD est un losange

En effet: AB =
$$\sqrt{(4+3)^2 + (5-1)^2} = \sqrt{7^2 + 4^2} = \sqrt{65}$$

BC = $\sqrt{(5-4)^2 + (-3-5)^2} = \sqrt{1^2 + 8^2} = \sqrt{65}$

Donc AB=BC, comme ABCD est un parallélogramme qui a deux côtés consécutifs de même longueur, c'est un losange.